

Wireless actuator

 ϵ

Heating/cooling relay FHK61/8-24 V UC

Only skilled electricians may install this electrical equipment otherwise there is the risk of fire or electric shock!

Temperature at mounting location: -20°C up to +50°C.

Storage temperature: -25°C up to +70°C. Relative humidity: annual average value <75%.

valid for devices from production week02/13 (see bottom side of housing)

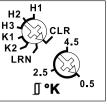
1 NO contact potential free 10A/250V AC. Only 0.3-0.8 watt standby loss.

Bidirectional wireless and repeater function are switchable.

For installation

45 mm long, 55 mm wide, 33 mm deep.

Supply voltage 8 to 24 V UC.


This wireless actuator features stateof-the-art hybrid technology that we developed: we combined the wear-free receiver and evaluation electronics with a bistable relay.

By using a bistable relay coil power loss and heating is avoided even in the on mode. After installation, wait for short automatic synchronisation before the switched consumer is connected to the mains.

This heating/cooling relay evaluates the information from wireless temperature controllers or sensors. Possibly supplemented by window/door contacts, motion detector, Hoppe window handles and wireless pushbuttons.

Bidirectional wireless and a repeater function can be enabled starting in production week 02/2013. Every function change by wireless button is confirmed by a wireless telegram. This wireless telegram can be taught-in in the GFVS software.

Function rotary switches

Left rotary switch for operating modes:

H1: Heating operation with PWM control at T = 4 minutes. (suitable for valves with thermoelectric valve drive)

H2: Heating operation with PWM control at T = 15 minutes. (suitable for valves with motor-driven valve drive)

H3: Heating operation with 2-point control.

K1: Cooling operation with PWM control at T = 15 minutes.

K2: Cooling mode with 2-point control. Switchover is visualised by LEDs flashing. Right rotary switch for adjustable hysteresis and PWM influence:
Left stop: lowest hysteresis 0.5°.
Middle position: hysteresis 2.5°.
Right stop: largest hysteresis 4.5°.
Inbetween, divisions in steps of 0.5°

visualised by LEDs flashing. Two-point control mode:

The hysteresis rotary switch sets the required difference between the switch-on and switch-off temperatures.

When the 'actual temperature >= reference temperature', the device is switched off.

When the 'actual temperature <= (reference temperature - hysteresis)', the device is switched on. The signs are the opposite

PWM control mode:

in cooling mode.

The hysteresis rotary switch set the required temperature difference at which the device is switched on at 100%. When the 'actual temperature >= reference temperature', the device is switched off. When the 'actual temperature <= (reference temperature - hysteresis)', the device is switched on at 100%. If the 'actual temperature' lies between the 'reference temperature - hysteresis' and the 'reference temperature', the device is switched on and off with a PWM in

steps of 10% depending on the tempera-

ture difference. The lower the temperature

difference, the shorter the switch-on time. As a result of the settability of the 100% value, the PWM can be adapted to the heater size and inertia. The signs are the opposite in cooling mode. In heating mode, the **frost protection** function is always enabled. As soon as the actual temperature drops below 8°C. the temperature is controlled in the selected operating mode to 8°C. If one or several windows are open, the output remains off provided the window/ door contacts FTK or Hoppe handles are tauaht-in. In heating mode, however, the frost protection remains enabled. As long as all taught-in motion detectors FBH detect no motion, the device is switched to setback mode. In heating mode, the reference temperature is set back by 2°; in cooling mode, it is raised by 2°. As soon as a motion detector signals movement again, the device is switched to normal mode. When a wireless pushbutton FT4 is taught-in, the assignment of the 4 keys is assigned with the following fixed functions: Top right: Normal mode (can also be enabled by timer). Bottom right: Night setback mode by 4°: in cooling mode, raised by 4° (can also be enabled by timer). Top left: Setback mode by 2°, in cooling mode, raised by 2°. Bottom left: Off (in heatingmode, frost protection

movement is detected. **Malfunction mode:**

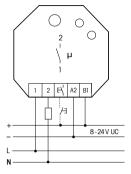
If no wireless telegram is received from a temperature sensor for more than 1 hour, the LED blinks at a slow rate and the device is switched to malfunction mode. In heating mode the device is switched on for 2 minutes with H1 and then switched off for 2 minutes. With H2 and H3, the duration is 7.5 minutes. The device is switched off in cooling mode. When a wireless telegram is again received, the LED goes out and the device switches back to normal mode.

enabled; in cooling mode permanent

pushbutton are tauaht-in at the same

the one that is valid. A motion detector

therefore switches off a setback mode


selected by wireless pushbutton when a

off). If the motion detector and wireless

time, the last telegram received is always

The LED performs during the teach-in process according to the operation manual. It shows wireless control commands by short flickering during operation.

Typical connection

Technical data

Rated switching capacity 10 A/250 V AC Standby loss (active power) 0.3-0.8 W

<u>Teaching-in wireless sensors in</u> wireless actuators

All sensors must be taught-in in actuators so that they can detect and executetheir commands.

Teaching-in actuator FHK61/8-24V UC

The teach-in memory is empty on delivery from the factory. If you are unsure whether the teach-in memory contains something or not, you must first clear the memory contents completely:

Set the top rotary switch to CLR. The LED flashes at a high rate. Within the next 10 seconds, turn the bottom rotary switch three times to the right stop (turn clockwise) and then turn back away from the stop. The LED stops flashing and goes out after 2 seconds. All taught-in sensors are cleared, the repeater and the confirmation telegrams are disabled.

Clear individual taught-in sensors in the same way as in the teach-in procedure, except that you set the top rotary switch to CLR instead of LRN, and operate the sensor. The LED previously flashing at a high rate goes out.

Teaching-in sensors

Set the bottom rotary switch to the required teach-in function:
 The flashing of the LED as soon as a new setting range has been reached when turning the rotary switch helps to find the desired position reliably.
 Set FTR, FT4, FBH, FTK or Hoppe window handles to right stop (4.5).
 On FTF, the position of the rotary switch defines the reference temperature during the teach-in process. In middle position (2.5) the reference temperature is 21°C. It can be set in steps of 1°

from 17°C at left stop (0.5) to 25°C at

2. Set the top rotary switch to LRN.
The LED flashes at a low rate.

right stop (4.5).

3. Operate the sensor to be taught-in. The LED goes out.

Only one temperature sensor can be taught-in at one time. During teach-in, a sensor that is already taught-in is automatically erased.

After teach-in, the rotary switches are set to the required function.

Switching on/off repeater:

If the supply voltage is also applied to the middle terminal when the power supply is connected, the repeater is switched on/off. When the power supply is switched on, the LED lights up for 2 seconds = repeater off (as-delivered state) or 5 seconds = repeater on to indicate the state

Enable confirmation telegrams:

The confirmation telegrams are disabled when the device leaves the factory. Turn the upper rotary switch to CLR. The LED flashes at a high rate. Within 10 seconds, turn the lower rotary switch three times to left stop (turn anti-clockwise) and back again. The LED stops flashing and goes out after 2 seconds. The confirmation telegrams are enabled.

Disable confirmation telegrams:

Turn the upper rotary switch to CLR. The LED flashes at a high rate. Within 10 seconds, turn the lower rotary switch three times to left stop (turn anti-clockwise) and back again. The LED goes out immediately. The confirmation telegrams are disabled.

When an actuator is ready for teach-in (the LED flashes at a low rate), the very next incoming signal is taught-in. Therefore, make absolutely sure that you do not activate any other sensors during the teach-in phase.

Must be kept for later use!

Eltako GmbH

05/2013 Subject to change without notice.