

Pushbutton input module FTS14EM

Only skilled electricians may install this electrical equipment otherwise there is the risk of fire or electric shock!

Temperature at mounting location: $-20^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$.
Storage temperature: $-25^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$. Relative humidity:
annual average value $<75 \%$.
Pushbutton input module for the Eltako RS485 bus, 10 control inputs for universal control voltage. Only 0.1 watt standby loss.
Modular device for DIN-EN 60715 TH35 railmounting. 2 modules $=36 \mathrm{~mm}$ wide, 58 mm deep.
Connection to the Eltako-RS485 bus. Bus cross wiring and power supply with jumper. Operation in conjunction with FTS14KS or FAM14.
A 12 V DC voltage is supplied from a switching power supply unit FSNT14$12 \mathrm{~V} / 12 \mathrm{~W}$ which has a width of only 1 module.
10 control inputs + El to + E10/-E electrically isolated from the supply voltage.
Control voltage: 8..230V UC.
Every button must be taught in with an identification number (ID) in one or several actuators as described in the operating instructions.

Function rotary switches

The lower rotary switch defines the group to which an FTS14EM belongs.

A total of 5 groups are available (1,101 , 201, 301 and 401) each with 100 IDs. The upper rotary switch (0 to 90) sets the ID within a group. The ID range within a group results from the combination of upper and lower rotary switches and must be set differently on each FTSI4EM. Maximum ten FTS14EMs form a group. Therefore, a total of 50 FTSI4EMs comprising 500 buttons are possible in one RS485 bus.
Every FTSI4EM can be set either to UT (= Universal button) or to RT (= direction button) using the lower rotary switch.
The LED under the upper rotary switch flickers briefly when a connected button is pressed.
Optional: An FAM14 wireless antenna module (from Wireless Building System) which is only two modules wide can also be installed. Actuators can then be activated via the FTSI4EM by wireless pushbuttons, hand-held transmitters and wireless sensors in addition to conventional buttons. As the FAM14 has an integrated switch mode power supply unit, the FTS14KS is no longer required for power supply in this configuration. The bidirectional FAM14 also permits a GFVS-Safe II to evaluate feedback messages from the actuators transferred by wireless. Each actuator status is then displayed and can also be changed. Connecting the HOLD terminals of all devices regulates bus access and prevents collisions.
The telegrams of the FTSI4EM and FTSI4KEM can also be sent to the Eltako Wireless Building with the optional wireless output module FTS14FA.
All hold terminals of the FTS14EM must be connected to the hold terminal of the FTS14KS or FAM14.
When 1 to 10 FTS14EMs are used, the HOLD terminal on one FTS14EM must be connected to the Enable terminal.
When 11 to 20 FTS14EMs are used, the HOLD terminal on two FTS14EMs must be connected to the Enable terminal.
When 21 to 30 FTSI4EMs are used, the HOLD terminal on three FTS14EMs must be connected to the Enable terminal.

When 31 to 40 FTS14EMs are used, the HOLD terminal on four FTS14EMs must be connected to the Enable terminal.
When 41 to 50 FTS14EMs are used, the HOLD terminal on five FTS14EMs must be connected to the Enable terminal.

10 control inputs $=10$ universal pushbuttons UT:
E1 $=0 \times 70$ (FT4- top right)
E2 $=0 \times 50$ (FT4- bottom right)
E3 $=0 \times 30$ (FT4- top left)
E4 $=0 \times 10$ (FT4- bottom left)
E5 $=0 \times 70$
$E 6=0 \times 50$
E7 $=0 \times 30$
$\mathrm{E} 8=0 \times 10$
$\mathrm{E} 9=0 \times 70$
$\mathrm{E} 10=0 \times 50$
10 control inputs $=5$ direction push-
buttons RT:
E1/E2 send 70/50 (= pushbutton right side top/bottom)
E3/E4 send 30/10 (= pushbutton left side top/bottom)
E5/E6 send 70/50
E7/E8 send 30/10
E9/E10 send 70/50
IDs are generated in "quasi-decimal" numbering in order to make it easier to convert terminal numbering to the button IDs to be entered in PCT14.
The ID numbers are therefore identical to the input numbers. You only need to add 1000.

Lower rotary switch on UT:

Each input has a separate ID.
IDs of first group:
$0 \times 1001 . .0 \times 1010$ (pushbutton 1..10)
$0 \times 1011 . .0 \times 1020$
0x1021..0x1030
0x1031..0x1040
0x1041..0x1050 (pushbutton 41..50)
0x1051..0x1060
0x1061..0x1070
0x1071.. 0×1080
0x1081..0x1090
0x1091..0x1100 (pushbutton 91..100)
IDs of second group:
0x1101..0x1110 (pushbutton 101..110)
0x1111..0x1120
0x1121..0x1130
0x1131..0x1140

0x1141..0x1150 (pushbutton 141..150)
0x1151..0x1160
$0 \times 1161 . .0 \times 1170$
$0 \times 1171 . .0 \times 1180$
0x1181..0x1190
0x1191..0x1200 (pushbulton 191..200)
..etc.. until group 5

Lower rotary switch on RT:

IDs are combined in pairs. There are no odd numbers. Numbering (in steps of 2) is simpler with even numbers than with odd numbers.
Pushbutton 1.10
E1 und E2 $=0 \times 1002$
E3 und E4 = Ox1004
E 5 und $\mathrm{E} 6=0 \times 1006$
E 7 und $\mathrm{E} 8=0 \times 1008$
E9 und E10 $=0 \times 1010$
Pushbutton $11 . .20$
E und $\mathrm{E} 2=0 \times 1012$
E3 und E4 $=0 \times 1014$
E 5 und $\mathrm{E} 6=0 \times 1016$
E7 und E8 = 0×1018
E9 und E10 $=0 \times 1020$
..etc.

Technical data

Control voltage:	Control current:
$8 \mathrm{~V} \mathrm{AC} / D \mathrm{C}$	$1.4 \mathrm{~mA} / 2.5 \mathrm{~mA}$
$12 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$2.3 \mathrm{~mA} / 4.0 \mathrm{~mA}$
$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$5.0 \mathrm{~mA} / 9.0 \mathrm{~mA}$
230 V AC/DC	$5(100) \mathrm{mA} / 5(100) \mathrm{mA}$
$(<5 \mathrm{~s})$	

Parallel capacitance $\quad 0.9 \mu \mathrm{~F}(3000 \mathrm{~m})$ (approx. length)
control lead at 230 V
Standby loss
0.1 W

Typical connection

The second terminator which is included in the FST14KS has to be plugged to the last actuator.

Must be kept for later use!

We recommend the housing for operating instructions GBAl4.

Eltako GmbH

D-70736 Fellbach
亩 +4971194350000
www.eltako.com

